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Abstract

The Langberg-Médard multiple unicast conjecture claims that for a strongly reach-
able k-pair network, there exists a feasible multi-flow with rate (1, 1, . . . , 1). In this
paper, we show that the conjecture holds true for k = 3.

1 Introduction

A (k, l)-network refers to a 4-tuple N = (V,A, S, T ) which consists of a directed acyclic
graph D = (V,A), a set S = {s1, s2, . . . , sk} of vertices with zero indegree, called sources
(or senders), and a set T = {t1, t2, . . . , tl} of vertices with zero outdegree, called sinks (or
receivers). In this paper, we are mainly concerned with (k, k)-networks, typically referred to
as k-pair networks in the literature and henceforth so in this paper.

Roughly put, the multiple unicast conjecture, also known as the Li-Li multiple unicast
conjecture [12], claims that for any k-pair network, if information can be transmitted from
all the senders to their corresponding receivers at rate (d1, d2, . . . , dk) via network coding,
then it can be transmitted at the same rate via undirected fractional routing. One of the
most challenging problems in the theory of network coding [17], this conjecture has been
doggedly resisting a series of attacks [1, 2, 3, 4, 7, 8, 11, 13, 15, 16, 18] and is still open to
date.

A (k, l)-network N is said to be strongly reachable if there exists an si-tj directed path
Psi,tj for all i, j such that Ps1,tj , Ps2,tj , · · · , Psk,tj are arc-disjoint for any j. Throughout the
paper, we will reserve the notations Ptj and P, where

Ptj := {Psi,tj : i = 1, 2, . . . , k}, P := ∪l
j=1Ptj .

We emphasize here that the choice of each Psi,tj may not be unique, which means that the
choice of each Ptj and that of P may not be unique.

∗This work has been partly presented in IEEE ISIT 2020 [5].
†This research is partly supported by a grant from the Research Grants Council of the Hong Kong

Special Administrative Region, China (Project No. 17301017) and a grant by the National Natural Science
Foundation of China (Project No. 61871343).
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The following Langberg-Médard multiple unicast conjecture [11], which deals with strongly
reachable k-pair networks, is a weaker version of the Li-Li multiple unicast conjecture.

Conjecture 1.1. For any strongly reachable k-pair network, there exists a feasible undirected
fractional multi-flow with rate (1, 1, . . . , 1).

The Langberg-Médard multiple unicast conjecture was first proposed in 2009 [11]. In
the same paper, the authors constructed a feasible undirected fractional multi-flow with rate
(1/3, 1/3, . . . , 1/3) for strongly reachable k-pair networks. Recently, we have improved 1/3
to 8/9 for a generic k in [1] and to 11/12 for k = 3, 4 in [4].

In this paper, we will establish Conjecture 1.1 for k = 3. In a nutshell, our approach
is based on the ideas and techniques developed in our previous work [1]-[4] and a delicate
topological classification of the so-called minimal 3-pair networks. Related work on network
topology analysis can be found in [10] and [6].

The rest of this paper is organized as follows. In Section 2, we recall some basic notions
and facts on the undirected fractional multi-flow. In Section 3, we introduce the notion of
regular network which allows us to put Conjecture 1.1 into an equivalent form. Then, in
Sections 4 and 5, we analyse the topologies of a minimal (3, 2)-network and a minimal 3-pair
network, respectively. Finally, our main result is stated and proved in Section 6.

2 Undirected Fractional Multi-Flows

In this section, we consider a strongly reachable k-pair network and adopt the associated
notations as introduced in Section 1.

For a directed path or an arc P starting from u ∈ V and ending at v ∈ V , we say u
and v are the tail and the head of P , denoted by tail(P ) and head(P ), respectively. For any
s, t ∈ V , an undirected fractional s-t flow (in simple, an s-t flow) 1 is a function f : A → R
satisfying the following flow conservation law: for any v /∈ {s, t},

excessf (v) = 0, (1)

where
excessf (v) :=

∑
a∈A: tail(a)=v

f(a)−
∑

a∈A: head(a)=v

f(a). (2)

It is easy to see that for any s-t flow f , excessf (s) = −excessf (t), which is called the rate
(or value) of f . We say f is feasible if |f(a)| ≤ 1 for all a ∈ A.

Given a k-pair network N = (V,A, S, T ), for any i = 1, 2, . . . , k, let fi be an si-ti flow,
where si ∈ S and ti ∈ T . We will refer to F = {f1, f2, . . . , fk} as an undirected fractional
multi-flow (in simple, a multi-flow) with rate (d1, d2, . . . , dk), where di is the rate of fi. F is
said to be feasible if ∑

1≤i≤k

|fi(a)| ≤ 1

for all a ∈ A.

1The undirected fractional flow/multi-flow defined for directed graph in this paper, which can be negative,
is equivalent to that defined in [14] for undirected graphs, which has to be non-negative.
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For a strongly reachable network N , we can define the linear multi-flow as follows. Given
a choice P of N , for each Psi,tj ∈ P, we first define an si-tj flow fi,j as

fi,j(a) =

{
1, a belongs to Psi,tj ,
0, otherwise.

Then, a multi-flow F = {f1, f2, . . . , fk} is said to be linear (by default, with respect to P) if

for each feasible l, there exist c
(l)
i,j ∈ R, 1 ≤ i, j ≤ k, such that

fl =
k∑

i,j=1

c
(l)
i,jfi,j, (3)

in which case F can be equivalently represented by its matrix form

C =
(
(c

(1)
i,j ), (c

(2)
i,j ), . . . , (c

(k)
i,j )

)
;

otherwise, it is called non-linear.
The following theorem has been established in [4].

Theorem 2.1. A linear multi-flow F has rate (1, 1, . . . , 1) if and only if all c
(l)
i,j in (3) satisfy

k∑
j=1

c
(l)
i,j = 0, for all i ̸= l,

k∑
i=1

c
(l)
i,j = 0, for all j ̸= l,

k∑
i=1

k∑
j=1

c
(l)
i,j = 1, for all l. (4)
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(a) : The s1-t1 flow f1
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(b) : The s2-t2 flow f2

Figure 1: A linear multi-flow.

Example 2.2. Consider the butterfly network depicted in Fig. 1, which is a strongly reach-
able 2-pair network with an unique choice of P = {Psi,tj : 1 ≤ i, j ≤ 2}. It is easy to check
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that the multi-flow F = (f1, f2) given in Fig. 1 is linear with rate (1, 1) and the corresponding
matrix form is ((

3
4

1
4

1
4

−1
4

)
,

( −1
4

1
4

1
4

3
4

))
,

i.e., f1 =
3
4
f1,1 +

1
4
f1,2 − 1

4
f2,2 +

1
4
f2,1 and f2 =

3
4
f2,2 +

1
4
f2,1 − 1

4
f1,1 +

1
4
f1,2. Noting that

|f1(a)|+ |f2(a)| =
{

1
2
, a ∈ {[s1, t2], [s2, t1]};

1, otherwise,

we see that F is feasible. On the other hand, it can be verified that the multi-flow F =
{f1, f2} given in Fig. 2 also has rate (1, 1) but is non-linear.
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(a) : The s1-t1 flow f1
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(b) : The s2-t2 flow f2

Figure 2: A non-linear multi-flow.

3 Regular (k, l)-Networks

We start with the definition of regular network.

Definition 3.1. [Regular (k, l)-network] A (k, l)-network N = (V,A, S, T ) is said to be
regular if it is strongly reachable and for each v ∈ V \ T , either the indegree deg+(v) = 1 or
the outdegree deg−(v) = 1.

In this paper, we will establish Conjecture 1.1 for k = 3 by proving the following equiva-
lent conjecture. Note that the only difference between the two conjectures is that “strongly
reachable” in Conjecture 1.1 is replaced by “regular” in Conjecture 3.2.

Conjecture 3.2. For any regular k-pair network, there exists a feasible undirected fractional
multi-flow with rate (1, 1, . . . , 1).
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To see the equivalence between the two conjectures, we first note that Conjecture 1.1
trivially implies Conjecture 3.2. To prove the other direction, for a strongly reachable k-
pair network N , we perform the following operations: (1) for each vertex w with indegree
deg+(w) = m > 1 and outdegree deg−(w) = n > 1, we replace it by a directed bipartite graph
Km,n with vertex set {u1, u2, . . . , um, v1, v2, . . . , vn} and arc set {[ui, vj] : 1 ≤ i ≤ m; 1 ≤ j ≤
n}, and moreover, replace each of its incoming arc [w′

i, w] by [w′
i, ui], i = 1, 2, . . . ,m, and each

of its outgoing arc [w,w′′
j ] by [vj, w

′′
j ], j = 1, 2, . . . , n; (2) for each source si with outdegree

deg−(si) = n > 1, we replace si by an arc [si, s
′
i] and replace each of its outgoing arc [si, vj]

by [s′i, vj], j = 1, 2, . . . , n. It can then be readily verified that the newly obtained network
N ′ is regular and each feasible undirected fractional multi-flow of N ′ can be mapped to one
in N with the same rate. Hence, Conjecture 3.2 implies Conjecture 1.1.

Henceforth, we assume N = (V,A, S, T ) is a regular (k, l)-network. To avoid cumbersome
wording, we refer to a path from Ptj as a Ptj -path, and moreover, an arc on a Ptj -path as
a Ptj -arc. Here, we note that a Ptj -arc can be simultaneously a Ptj′

-arc for some j′ ̸= j; if
such j′ does not exist, the arc is said to be a pure Ptj -arc.

For ease of presentation, we will henceforth follow [9] and “draw” (or in geometrical
terms, “embed”) N in R3, and as such, N will be treated as a set of points in R3. More
specifically, we identify each vertex v ∈ V as a point in R3, still denoted by v, and each
arc [u, v] ∈ A as a curve 2 [u, v] ⊂ R3 such that for any two arcs [u1, v1], [u2, v2] ∈ A, the
corresponding curves satisfy [u1, v1] ∩ [u2, v2] = {u1, v1} ∩ {u2, v2}.

With this viewpoint, it is possible to state the following theorem (and all the results in
later sections) using set-theoretical and topological notions.

Theorem 3.3. For a regular (k, l)-network N , the following statements hold.

1) For any u1-v1 path P1 and u2-v2 path P2, P
◦
1 ∩ P ◦

2 contains no isolated point, where P ◦
i =

Pi \ {ui, vi} for i = 1, 2.

2) For any si1-tj1 path P1 and si2-tj2 path P2, if j1 ̸= j2, then P1 ∩ P2 contains no isolated
point; in particular, for any P1 ∈ Ptj1

and P2 ∈ Ptj2
, if j1 ̸= j2, then P1 ∩ P2 contains

no isolated point.

3) For any fixed j, ∩P∈Ptj
P = {tj}.

Proof. By Definition 3.1, there is no isolated point v ∈ P ◦
1 ∩ P ◦

2 since otherwise v would be
a vertex of N whose indegree and outdegree are both at least 2. Hence 1) holds. By the
definition, each source of a regular (k, l)-network has indegree zero and outdegree 1, and
hence 2) holds by applying 1). Noticing the arc-disjointness of all Ptj -paths for a fixed j and
by applying 1), we conclude that 3) holds.

Remark 3.4. Statements 2, 3) of Theorem 3.3, which do not hold true for a strongly reach-
able (k, l)-network that is not regular, will play an important role in topologically categorizing
regular (3, 2)-networks in the next section.

Definition 3.5. [Semi-Cycle [6]] Given a choice of Ptj , a subgraph C of N is said to be a
Ptj -semi-cycle if it becomes a directed cycle after reversing the direction of each Ptj -arc (not
necessarily pure).

2A curve [u, v] is the image of the unit interval [0, 1] under a homeomorphism such that 0 is mapped to
u ∈ R3 and 1 to v ∈ R3.
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A Ptj -semi-cycle C is said to be of order n if Ĉ := C ∩ (∪P∈Ptj
P ) has n connected

components [ui, vi], i = 1, 2, . . . , n. It is easy to see that Ĉ has no isolated point. Hence,
all [ui, vi] are subpaths of Ptj -paths and we will call each ui (resp. vi) a tail (resp. head) of

C. For each Ptj -semi-cycle C, clearly, (C ∪P∈Ptj
P \ Ĉ) ∪n

i=1 {ui, vi} provides an alternative

choice of Ptj . For this reason we call (C \ Ĉ)∪n
i=1 {ui, vi} a Ptj -crossing of order n associated

to C. Note that for this alternative choice of Ptj , C is still a Ptj -semi-cycle while Ĉ is the
associated Ptj -crossing. Consequently, a Ptj -semi-cycle C can be written as the union of two
associated Ptj -crossings, each corresponding to a choice of Ptj . More formally, we will often

in the following write C = Ĉ1 ∪ Ĉ2, where Ĉ1 (resp. Ĉ2) is a Ptj -crossing if Ĉ2 ⊂ ∪P∈Ptj
P

(resp. Ĉ1 ⊂ ∪P∈Ptj
P ); see Fig. 3 for an illustrative example.

Ps1,t1 Ps2,t1 Ps3,t1

u1 u2 u3

v1 v2 v3

Figure 3: A Pt1-semi-cycle C of order 3 with heads {v1, v2, v3} and tails {u1, u2, u3}. C =

Ĉ1 ∪ Ĉ2 where Ĉ1 = [u1, v1] ∪ [u2, v2] ∪ [u3, v3] and Ĉ2 = [u1, v2] ∪ [u2, v3] ∪ [u3, v1]. If

Ĉ1 ⊂ ∪P∈Pt1
P (as shown in the figure) then Ĉ2 is a Pt1-crossing and if Ĉ2 ⊂ ∪P∈Pt1

P then

Ĉ1 is a Pt1-crossing.

Lemma 3.6. A regular (k, l)-network N has no Ptj -semi-cycle/crossing if and only if the
choice of Ptj is unique.

Proof. The “if ” part is trivial. For the other direction, we suppose there exist two choices

of Ptj , say, P
(1)
tj and P

(2)
tj . Then,

N ′
tj
:=

∪
P1∈P(1)

tj
,P2∈P(2)

tj

(P1 ∪ P2) \ (P1 ∩ P2)

is not empty. Now, we reverse the direction of each P
(1)
tj -arc in N ′

tj
to obtain N ′′

tj
. Then,

noticing that ∩P∈Ptj
P = {tj} for each choice of Ptj , we infer that for any v ̸= tj, deg

−(v) =

deg+(v) = 1 and deg−(tj) = deg+(tj). Hence, N ′′
tj
is an Eulerian directed graph and com-

posed of arc-disjoint directed cycles, each corresponding to a Ptj -semi-cycle of N by defini-
tion.

Remark 3.7. According to the proof of Lemma 3.6, we can have that: For any Ptj -arc,
either it is a Ptj -arc for all choice of Ptj or it belongs to a Ptj -semi-cycle.

Definition 3.8. [Minimal (k, l)-Network] A (k, l)-network N is said to be minimal if it is
regular yet ceases to be regular upon removal of any of its arcs.

In the following two sections, we will investigate the topological properties of minimal
(3, 2)-networks and minimal 3-pair networks.
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4 Minimal (3, 2)-Networks

In this section, we aim to derive all the possible topologies of a minimal (3, 2)-network. To
that end, we first consider a regular (3, 2)-network N and obtain some lemmas, which are
also useful in the next section. For notational convenience, for any choice of Pt1 and Pt2 of
a regular (3, 2)-network N , we rewrite Psi,t1 ∈ Pt1 and Psi,t2 ∈ Pt2 as ri and gi, i = 1, 2, 3,
respectively, and rewrite Pt1 and Pt2 as r and g, respectively.

4.1 Useful Lemmas

In this subsection, we consider a regular (3, 2)-network N , which is not necessarily minimal.

Lemma 4.1. A regular (3, 2)-network N is minimal if and only if N = ∪p∈r∪gp and has no
semi-cycle (i.e., r-semi-cycle or g-semi-cycle).

u1 v1

u2

u3

v2

v3

v4

w1

w2

w3

(a)

u1 v1

u2

u3

v2

v3

v4

w1

w2

w3

(b)

Figure 4: Illustrations for the proof of Lemma 4.1, where pure g-arcs and pure r-arcs are
colored green and red, respectively. (a) illustrates a g-semi-cycle C consisting of [u1, v2],
[v1, w1, w2, u2] (each a subpath of some g-path) and [u1, u2], [v1, v2] (each a subpath of some
r-path). Note that C is not an r-semi-cycle. As shown in (b), after removing all pure g-arcs
in C, one can find an alternative g.

Proof. The “if” part immediately follows from the fact that both r and g are unique due
to Lemma 3.6. For the other direction, suppose r and g be a choice of Pt1 and Pt2 , clearly
we have N = ∪p∈r∪gp by the minimality of N . Now, we assume, without loss of generality,
there is a g-semi-cycle C. Then, C has at least one pure g-arc, since otherwise all arcs of
C would be r-arcs, which is impossible by 3) of Theorem 3.3. Removing all the pure g-arcs
within C, we will obtain a regular (3, 2)-network (see Fig. 4 for an illustrative example),
contradicting the minimality of N .

Given a regular (3, 2)-network N and a choice of r and g, for any ri ∈ r, let ri|g denote
the intersection of ri with g-paths, or more precisely,

ri|g := ri ∩ (∪3
j=1gj). (5)
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Let ℓg(ri) be the number of connected components of ri|g and rgi (1), r
g
i (2), . . . , r

g
i (ℓ

g(ri)) be
all the connected components listed from upstream to downstream along the direction of
ri. According to Theorem 3.3, for each feasible l, rgi (l) is a subpath of ri (rather than an
isolated point). Denote by rgi (l, l + 1) the subpath of ri from the head of rgi (l) to the tail of
rgi (l + 1). Note that with r and g swapped, notations like gi|r and gri (l) can be defined in a
parallel fashion. As there are only two groups of paths under consideration, we may in the
following omit the superscripts and write rgi (l), ℓ

g(ri), g
r
i (l), ℓ

r(gi) as ri(l), ℓ(ri), gi(l), ℓ(gi),
respectively.

Note that by the regularity of N , each source si has indegree zero and outdegree 1, and
hence for any choice of r and g, we have ri(1) = gi(1), for all i = 1, 2, 3. Given a choice of r
and g, a semi-cycle/crossing is said to be uppermost if each tail of the semi-cycle/crossing is
a head of ri(1) = gi(1) for some feasible i. We have the following lemmas.

s1 s2 s3

r1 r2 r3

(a)

s1 s2 s3

r1 r2 r3

(b)

Figure 5: Illustrations for the proof of Lemma 4.2.

Lemma 4.2. Given a choice of r and g of N , if there exists no uppermost r-semi-cycle,
then there exists gi ∈ g such that ℓ(gi) = 1; in particular, if N is minimal, then there exists
gi ∈ g such that ℓ(gi) = 1.

Proof. First of all, we consider the path g1. If ℓ(g1) = 1, then there is nothing to prove.
Hence, we suppose in the following that ℓ(g1) > 1. If g1(2) ⊆ r1, then g1(1, 2) forms an
r-crossing such that its tail is the head of r1(1) = g1(1). Hence, we assume in the following
that g1(2) ⊆ r2 (see Fig. 5(a)).

Now, we consider the path g2. As before, we suppose in the following that ℓ(g2) > 1. By
the same arguments as above, we have g2(2) ̸⊆ r2. Moreover, it holds that g2(2) ̸⊆ r1 since
otherwise g1(1, 2) and g2(1, 2) form an r-crossing of order 2 such that its two tails are the
heads of r1(1) = g1(1) and r2(1) = g2(1), which implies that g2(2) ⊆ r3 (see Fig. 5(b)).

Finally, consider the path g3 and suppose, by way of contradiction, that ℓ(g3) > 1. Then,
similarly as above, we have g3(2) ̸⊆ r3 and g3(2) ̸⊆ r2. Moreover, we have g3(2) ̸⊆ r1
since otherwise g1(1, 2), g2(1, 2) and g3(1, 2) form an r-crossing of order 3 such that its three
tails are the heads of r1(1) = g1(1), r2(1) = g2(1) and r3(1) = g3(1). Hence, we obtain a
contradiction to the existence of g3(2) and thus ℓ(g3) = 1, as desired.
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By swapping r and g of Lemma 4.2, we have that if there exists no uppermost g-semi-
cycle, then there exists rj ∈ r such that ℓ(rj) = 1. In fact, we can further have the following
lemma.

Lemma 4.3. Given a choice of r and g of N , if there exists no uppermost r-semi-cycle,
then for any j such that ℓ(rj) = 1, there exists i ̸= j such that ℓ(gi) = 1; in particular, if N
is minimal, then for any j such that ℓ(rj) = 1, there exists i ̸= j such that ℓ(gi) = 1.

Proof. Without loss of generality assume ℓ(r1) = 1. By Lemma 4.2, there exists gi ∈ g such
that ℓ(gi) = 1. If i ̸= 1, then the lemma is true. So, we suppose in the following ℓ(g1) = 1.

We first consider the path g2. If ℓ(g2) = 1, then the lemma is true. Hence, we suppose
in the following ℓ(g2) > 1. Clearly, g2(2) ̸⊆ r2 since otherwise g2(1, 2) forms an uppermost
r-crossing; and g2(2) ̸⊆ r1 since ℓ(r1) = 1. Hence, g2(2) ⊆ r3.

Now, consider the path g3. If ℓ(g3) = 1, then we have done. Hence, we suppose in
the following ℓ(g3) > 1. Clearly, g3(2) ̸⊆ r3 since otherwise g3(1, 2) forms an uppermost
r-crossing; and g3(2) ̸⊆ r2 since otherwise g2(1, 2) and g3(1, 2) form an uppermost r-crossing.
It then follows that g3(2) ⊆ r1, which however contradicts ℓ(r1) = 1.

Clearly, by swapping r with g of Lemma 4.3, we have that if there exists no uppermost
semi-cycle, then for any i such that ℓ(gi) = 1, there exists j ̸= i such that ℓ(rj) = 1.

Definition 4.4. [pseudo-minimal (3, 2)-network] A regular (3, 2)-network N is said to be
pseudo-minimal if there exists a choice of r and g such that N = ∪p∈r∪gp and i ̸= j such
that ℓ(gi) = ℓ(rj) = 1.

According to Lemma 4.2 and Lemma 4.3, if N = ∪p∈r∪gp has no uppermost semi-cycle,
then it is pseudo-minimal; in particular, a minimal (3, 2)-network N is pseudo-minimal. This
fact will play a key role in our treatment.

4.2 Topologies of Minimal (3, 2)-network

In this subsection, we will derive all the possible topologies of a minimal (3, 2)-network N .
We say N = ∪p∈r∪gp is non-degenerated if there exists an unique choices of i ̸= j such that
ℓ(gi) = ℓ(rj) = 1, and degenerated otherwise. We will first deal with the degenerated case
and then the non-degenerated case. The following simple observation will be frequently used.

Lemma 4.5. For any feasible l, if ri(l) ⊆ gj, then ri(l + 1) * gj; similarly, if gi(l) ⊆ rj,
then gi(l + 1) * rj.

Proof. If ri(l) ⊆ gj and ri(l + 1) ⊆ gj, then ri(l, l + 1) forms a g-crossing, contradicting the
minimality of N .

Theorem 4.6. A degenerated N has three possible topologies as in Fig. 6.

Proof. We will deal with the following two cases:

1) There exists i such that ℓ(ri) = ℓ(gi) = 1. In this case, by Lemma 4.3, we have the
following subcases:

9



si sj sl

t1 t2
(a)

si sj sl

t1 t2
(b)

si sj sl

t1 t2
(c)

Figure 6: Possible topologies of a degenerated N

1.1) There exists j ̸= i such that ℓ(gj) = 1 and ℓ(rj) = 1. In this case, it is easy to
see that there exists l distinct from both i and j such that ℓ(rl) = ℓ(gl) = 1, as
shown in (a) of Fig. 6.

1.2) There exist j ̸= i and l ̸= i such that ℓ(rj) = 1 and ℓ(gl) = 1. In this case, if
ℓ(gj) = 1, we have Case 1.1); otherwise, we have gj(2) = rl(2), as shown in (b) of
Fig. 6.

2) For all i = 1, 2, 3, ℓ(ri) = ℓ(gi) = 1 does not hold. In this case, there exist distinct i, j, l
such that ℓ(ri) = ℓ(rj) = ℓ(gl) = 1. We consider rl and have either “rl(2) = gj(2) and
rl(3) = gi(2)”, as shown in (c) of Fig. 6, or “rl(2) = gi(2) and rl(3) = gj(2)”, as shown
in (c) of Fig. 6 with i, j swapped.

Theorem 4.7. A non-degenerated N has five possible topologies as in Fig. 7.

Proof. For a non-degenerated N , we suppose that ℓ(ri) = ℓ(gl) = 1 and start our argument
by considering gi(2) and gj(2). By Lemma 4.5, we have the following two cases:

1) gi(2) ⊆ rj and gj(2) ⊆ rl. In this case, by Lemma 4.5, we infer that rj(2) ̸⊆ gj and hence
rj(2) ⊆ gi, which implies that gi(2) = rj(2) (due to the acyclicity of N ). We then
further consider the following two subcases:

1.1) ℓ(gi) = 2.

1.2) ℓ(gi) > 2.

In Case 1.1), it is easy to see that gj(2) = rl(2), which leads to the following two
subcases:

1.1.1) ℓ(gj) = 2. In this case, N has the topology as in (a) of Fig. 7.
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Figure 7: Possible topologies of a non-degenerated N

1.1.2) ℓ(gj) ≥ 3. In this case, gj(3) ⊆ rj. By Lemma 4.5 and the acylicity of the
network, we have gj(3) = rj(3). Moreover, it holds true that ℓ(gj) = 3 since
otherwise if gj(4) ⊆ rl, again by Lemma 4.5 and the acyclicity of the network,
we have gj(4) = rl(3) and hence rl(2), rl(3) ⊆ gj, which contradicts Lemma 4.5.
Hence, in this case, N is topologically equivalent to (b) of Fig. 7.

In Case 1.2), since gi(2) ⊆ rj, we have gi(3) ⊆ rl. Since gj(2), gi(3) ⊆ rl, we will deal
with the following two subcases:

1.2.1) gj(2) = rl(2) and gi(3) = rl(3). In this case, if ℓ(gj) ≥ 3, then by Lemma 4.5,
gj(3) ⊆ rj, which however would imply gj(2, 3) and gi(2, 3) form an r-crossing.
Hence, we have ℓ(gj) = 2. Now, if ℓ(gi) ≥ 4, then by Lemma 4.5, gi(4) ⊆ rj,
which further implies gi(4) = rj(3). Hence, rj(2), rj(3) ⊆ gi, which contradicts
Lemma 4.5. Hence ℓ(gj) = 2, ℓ(gi) = 3, and N has the topology as in (c) of Fig. 7.

1.2.2) gi(3) = rl(2) and gj(2) = rl(3). In this case, if ℓ(gi) ≥ 4, then gi(4) ⊆ rj and
hence gi(3, 4) and gj(1, 2) form an r-crossing, which is a contradiction. Thus,
ℓ(gi) = 3 and then we will consider the following two subcases:

1.2.2.1) ℓ(gj) = 2. In this case, we conclude that N has the topology as in (d) of
Fig. 7.

1.2.2.2) ℓ(gj) ≥ 3. In this case, by Lemma 4.5, we have gj(3) ⊆ rj, which further
implies gj(3) = rj(3). Now, if ℓ(gj) ≥ 4, then by Lemma 4.5, gj(4) ⊆ rl,
which further implies gj(4) = rl(4) and hence rl(3), rl(4) ⊆ gj, which contra-
dicts Lemma 4.5. Hence ℓ(gj) = 3 and we conclude that N has the topology as
in (e) of Fig. 7.

2) gi(2) ⊆ rl and gj(2) ⊆ rl. In this case, via a relabelling if necessary, we can assume
gj(2) = rl(2) and gi(2) = rl(3). By Lemma 4.5, we have gi(3) ⊆ rj and gj(3) ⊆ rj.
Then, we will consider the following two subcases:
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2.1) gj(3) = rj(2);

2.2) gi(3) = rj(2).

It is easy to see that 2.1) is impossible since otherwise rj(1), rj(2) ⊆ gj, which contra-
dicts Lemma 4.5. Hence, we have rj(2) ⊆ gi and rl(2) ⊆ gj. By switching the labels of
sinks and relabeling sources si, sl as sl, si, respectively, we will reach Case 1), which
has been dealt with before.

The following corollary can be obtained by inspecting (a)-(e) of Fig. 7 and will be used
later. For two vertices u, v ∈ V , denote by u ≤ v if u = v or there exists an u-v directed
path; and for two paths p1, p2, denote by p1 ≤ p2 if tail(p1) ≤ tail(p2).

Corollary 4.8. For a non-degenerated N with ℓ(ri) = ℓ(gl) = 1, we have:

1) ∅ ̸= gi ∩ rj = rj(2) and ∅ ̸= rl ∩ gj = gj(2).

2) Either rl ∩ gi = ∅ (i.e., ℓ(rl) = ℓ(gi) = 2) or rl ∩ gi ̸= ∅ (i.e., ℓ(rl) = ℓ(gi) = 3).

3) If rl ∩ gi ̸= ∅, then either

rl ∩ gj ≤ rl ∩ gi and rj ∩ gi ≤ rl ∩ gi, (6)

or
rl ∩ gj ≤ rl ∩ gi ≤ rj ∩ gi (7)

or
rj ∩ gi ≤ rl ∩ gi ≤ rl ∩ gj. (8)

For example, (a)-(b) of Fig. 7 satisfy rl∩gi = ∅ and (c)-(e) of Fig. 7 satisfy rl∩gi ̸= ∅ (more
specifically, (c) satisfies (6) while (d)-(e) satisfy (7)). Clearly, for any non-degeneratedN with
ℓ(ri) = ℓ(gl) = 1, by swapping the two sinks t1, t2 (i.e., swapping r, g) and swapping the two
sources si, sl (which keeps the topology of N unchanged), the property ℓ(ri) = ℓ(gl) = 1 still
holds. However, this transformation maintains the inequality (6) but swaps the inequalities
(7) and (8). Note that the two networks satisfying (8) are not drawn in Fig. 7 since they
have the same topology as in (d) and (e).

5 Minimal 3-pair Networks

Throughout this section, we consider a minimal 3-pair network N . We say that N is stable
if the choice of P is unique, and unstable otherwise. For any feasible i ̸= j and any choice
of Pti and Ptj , let Nti,tj := ∪P∈Pti∪Ptj

P be the regular (3, 2)-network induced by Pti and
Ptj . The following fact will be frequently used: for each minimal 3-pair network N and
each feasible i ̸= j, there exists a choice of Pti and Ptj such that Nti,tj is a minimal (3, 2)-
network. Note that according to Lemma 3.6, N is unstable if and only if it contains at least
one Ptl-semi-cycle C, which is not necessarily a Ptl-semi-cycle in Nti,tl or a Ptl-semi-cycle in
Ntj ,tl , as illustrated in Fig. 8. Throughout this section, we assume that i, j, l ∈ {1, 2, 3} are
distinct.
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(a)
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t1 t3 t2
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v3

u2

u3

(b)

Figure 8: Two minimal 3-pair networks, where (a) is stable and (b) is unstable. In (b),
Ps2,t3 ∈ P can be chosen as either [s2, v1, v2, v3, v4, v5, t3] or [s2, v1, u2, u3, v4, v5, t3], and there is

a Pt3-semi-cycle C = Ĉ1∪ Ĉ2 of order 1 such that Ĉ1 = [v1, v2, v3, v4] and Ĉ2 = [v1, u2, u3, v4].

If Ps2,t3 is chosen such that Ĉ1 ⊂ Ps2,t3 (resp. Ĉ2 ⊂ Ps2,t3), then Ĉ2 (resp. Ĉ2) is a Pt3-crossing
in Nt2,t3 (resp. Nt1,t3) but not a Pt3-crossing in Nt1,t3 (resp. Nt2,t3).

5.1 The Unstable 3-pair Network

We need the following several lemmas on an unstable 3-pair network N .

Lemma 5.1. Any Ptl-semi-cycle C is covered by Nti,tj , i.e., C ⊂ ∪P∈Pti∪Ptj
P , for any

choice of Pti ,Ptj .

Proof. Suppose, by way of contradiction, that there exists an arc a ⊂ C \ ∪P∈Pti∪Ptj
P . Let

C = Ĉ1 ∪ Ĉ2, where each Ĉi is a Ptl-crossing. Without loss of generality, we assume a ⊂ Ĉ1.

Then, N \ a is a regular 3-pair network by choosing Ptl such that Ĉ2 ⊂ ∪P∈Ptl
P , which

violates the minimality of N .

Lemma 5.2. Any semi-cycle is of order 1.

Proof. First of all, we choose Pti , Ptj such that Nti,tj is a minimal (3, 2)-network. Then, by
Theorems 4.6 and 4.7, Nti,tj is topologically equivalent to one of the eight networks as shown
in Fig. 6 and Fig. 7. It can be readily verified that none of the three networks in Fig. 6
and the network in Fig. 7 (a) can cover any semi-cycle; and each of the other four networks
in Fig. 7 can cover a semi-cycle of order 1 but cannot cover a semi-cycle of order 2, which
completes the proof.

Lemma 5.3. For any Pti-semi-cycle C and any Ptj -semi-cycle C ′, C ∩ C ′ = ∅.

Proof. Suppose, by way of contradiction, there exists v ∈ C ∩C ′. If v is the head of C, then
by Lemma 5.1 and the regularity of N , v has an unique incoming arc and two outgoing arcs
such that one is a Ptj -arc and the other is a Ptl-arc, for any choice of Ptj and Ptl . It is easy
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to see that v /∈ C ′ since any point in a Ptj -semi-cycle cannot have the above property. Thus,
we conclude that v is not the head of C. Similarly, we know that v is not the tail of C. In
the same way, v is not the head/tail of C ′.

Suppose C = Ĉ1∪ Ĉ2 and C ′ = Ĉ ′
1∪ Ĉ ′

2. By 1) of Theorem 3.3 and the above discussions,

C∩C ′ has no isolated points and hence we assume, without loss of generality, [u, v] ⊆ Ĉ1∩Ĉ ′
1

is a connected component of C∩C ′. Clearly, we have deg+(u) ≥ 2 and deg−(v) ≥ 2. However,
by the definitions of Pti-semi-cycle and Ptj -semi-cycle, there exists a choice of Pti such that

[u, v] ⊂ Ĉ1 * ∪P∈Pti
P and a choice of Ptj such that [u, v] ⊂ Ĉ ′

1 * ∪P∈Ptj
P . Hence, [u, v] is

composed of pure Ptl-arcs, which, however, is impossible since deg+(u) ≥ 2 and deg−(v) ≥ 2
and the lemma is then proved.

Consider a Ptl-semi-cycle C which is covered by Nti,tj for some choice of Pti and Ptj . For
an arc a ⊂ C, if a is a Pti-arc, by Lemma 5.3, a does not belong to any Pti-semi-cycle, and
then by Remark 3.7, a is a Pti-arc for all choice of Pti . Hence, in the following, we define
the type of a Ptl-semi-cycle C according to how it is embedded into Nti,tj for all choice of

Pti and Ptj . More specifically, suppose C = Ĉ1 ∪ Ĉ2, where Ĉ1 and Ĉ2 are two paths with
the same head and tail. Then, a Ptl-semi-cycle C must be of the following three types:

Type 1: There exist P ∈ Pti and Q ∈ Ptj such that Ĉ1 ⊂ P and Ĉ2 ⊂ Q. Fig. 7 (b) may
cover a Pt3-semi-cycle C of this type such that the head of C is the tail of rj(1) = gj(1)
and the tail of C is rj(3) = gj(3);

Type 2: None of Ĉ1 and Ĉ2 is covered by a path P ∈ Pti or a path Q ∈ Ptj . Fig. 7 (c) may
cover a Pt3-semi-cycle C of this type such that the head of C is the tail of rj(1) = gj(1)
and the tail of C is rl(3) = gi(3);

Type 3: Only one of Ĉ1 and Ĉ2 is covered by a path P ∈ Pti or a path Q ∈ Ptj . Fig. 7
(d) may cover a Pt3-semi-cycle C of this type such that the head of C is the tail of
rj(1) = gj(1) and the tail of C is rl(3) = gj(2).

Remark 5.4. If Nt1,t2 has the topology as in Fig. 7 (e), then it may cover the following
Pt3-semi-cycles:

(1) The head of C is the tail of rj(1) = gj(1) and the tail of C is the head of rj(3) = gj(3).
C is of type 1;

(2) The head of C ′ is the tail of rj(1) = gj(1) and the tail of C ′ is the head of rl(3) = gj(2).
C ′ is of type 3;

(3) The head of C ′′ is the tail of gi(2) = rj(2) and tail of C ′′ is the head of rj(3) = gj(3).
C ′′ is of type 3.

For a minimal 3-pair network N , we say N contains a Ptl-semi-cycle C if there exists a
choice of Ptl such that C is a Ptl-semi-cycle. For example, in Remark 5.4, if both Pt3-semi-
cycle C ′ and Pt3-semi-cycle C ′′ are contained in N , then Pt3-semi-cycle C is also contained
in N (Notice that C ⊆ C ′ ∪ C ′′). That is to say, if there exists a choice of Pt3 such that C ′

is a Pt3-semi-cycle and a (possibly different) choice of Pt3 such that C ′′ is a Pt3-semi-cycle,
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then there exists a choice of Pt3 such that C is a Pt3-semi-cycle. However, it is easy to see
that there does not exist a choice of Pt3 such that all of C, C ′ and C ′′ are Pt3-semi-cycles
at once.

Lemma 5.5. Suppose that N contains a Ptl-semi-cycle. If N contains no Ptl-semi-cycle of
type 1, then it contains an unique Ptl-semi-cycle of type 2 or 3.

Proof. Suppose C ⊂ Nti,tj is a Ptl-semi-cycle for some choice of Ptl , where Nti,tj is a minimal
(3, 2)-network. If Nti,tj has the topology as in Fig. 7 (b) (resp. (c), (d)), then by Lemma
5.1, C is the unique Ptl-semi-cycle of type 1 (resp. 2, 3). If Nti,tj has topology as in Fig. 7
(d), then, it follows from the discussions below Remark 5.4 and the fact that N contains no
Ptl-semi-cycle of type 1 that it contains an unique Ptl-semi-cycle of type 3.

We have the following theorem.

Theorem 5.6. For all l = 1, 2, 3, if N contains no Ptl-semi-cycle of type 1, then there exists
a choice of P such that all Nt1,t2, Nt1,t3 and Nt2,t3 are minimal.

Proof. If N is stable, then there is nothing to prove. Hence, we suppose in the following
that there exists a Ptl-semi-cycle for some l ∈ {1, 2, 3}. If N contains no Ptl-semi-cycle of

type 1, then by Lemma 5.5, N contains an unique Ptl-semi-cycle C = Ĉ1 ∪ Ĉ2 of type 2 or

3. By the definition of type 2/type 3 semi-cycle, we assume, without loss of generality, Ĉ1 is
neither covered by a path of Pti nor by a path of Ptj for any choice of Pti and Ptj . Clearly,

if we choose Ptl such that Ĉ2 ⊂ P , P ∈ Ptl , then C is neither a Ptl-semi-cycle in Nti,tl nor
a Ptl-semi-cycle in Ntj ,tl , for any choice of Pti and Ptj .

Since N contains no Ptl-semi-cycle of type 1 for all l = 1, 2, 3, we can always choose Pt1 ,
Pt2 and Pt3 as above such that there is no semi-cycle in Nt1,t2 Nt1,t3 and Nt2,t3 . The theorem
then follows from Lemma 4.1.

Corollary 5.7. For all l = 1, 2, 3, if N contains no Ptl-semi-cycle C of type 1 such that C
is either an uppermost Ptl-semi-cycle in Nti,tl or an uppermost Ptl-semi-cycle in Ntj ,tl then
there exists a choice of P such that all Nt1,t2, Nt1,t3 and Nt2,t3 are pseudo-minimal.

Proof. By definition, we suppose C = Ĉ1 ∪ Ĉ2 is a Ptl-semi-cycle of type 1 such that Ĉ1 is

covered by a path of Pti and Ĉ2 is covered by a path of Ptj . Hence, if we choose Ptl such

that Ĉ1 ⊂ P , P ∈ Ptl , then C is a Ptl-semi-cycle in Ntj ,tl but not a Ptl-semi-cycle in Nti,tl ;

and if we choose Ptl such that Ĉ2 ⊂ P , P ∈ Ptl , then C is a Ptl-semi-cycle in Nti,tl but
not a Ptl-semi-cycle in Ntj ,tl (see Fig. 8 (b) for an illustrative example). Hence, according
to Theorem 5.6 and by the assumption, we can choose Ptl such that there is no uppermost
Ptl-semi-cycle in Nti,tl and Ntj ,tl . For all l = 1, 2, 3, by choosing Ptl as above, we obtain a
choice of P such that there is no uppermost semi-cycle in each of Nt1,t2 , Nt1,t3 and Nt2,t3 ,
which completes the proof.

In the next section, we will prove that if all Nt1,t2 , Nt1,t3 and Nt2,t3 are pseudo-minimal,
then there is a feasible linear multi-flow with rate (1, 1, 1). To that end, we need first give a
detailed classification of such networks and give a forbidden structure in the next subsection.
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5.2 A Forbidden Structure

Given a choice of P of a minimal 3-pair network N , for each i ̸= j, consider the regular
(3, 2)-network Nti,tj and let

mi
i,j := {l′ : ℓ(Psl′ ,ti

) = 1},

where ℓ(Psl′ ,ti
) (Psl′ ,ti

∈ Pti) denotes the number of connected components of Psl′ ,ti
|Ptj

(see

(5) for the definition). Note that we neglect the order of the two subscripts of m, i.e.,
mi

i,j = mi
j,i and for notational convenience, if mi

i,j = {l}, we may simply write mi
i,j = l.

In Fig. 8 (a), one can check that m1
1,2 = 1, m2

1,2 = 3, m1
1,3 = 1, m3

1,3 = 3, m2
2,3 = 1

and m3
2,3 = 3; in Fig. 8 (b), if we choose Ps2,t3 as [s2, v1, v2, v3, v4, v5, t3], then m1

1,2 = 1,
m2

1,2 = 3, m1
1,3 = {1, 3}, m3

1,3 = {2, 3}, m2
2,3 = 3 and m3

2,3 = 1; if we choose Ps2,t3 as
[s2, v1, u2, u3, v4, v5, t3], then m1

1,2 = 1, m2
1,2 = 3, m1

1,3 = 1, m3
1,3 = 3, m2

2,3 = {2, 3} and
m3

2,3 = {1, 2}. Hence, for both (a) and (b) of Fig. 8, and each choice of P, we have Nt1,t2 ,
Nt1,t3 and Nt2,t3 are pseudo-minimal. The following theorem shows that some topological
structure, that is characterized by mi

i,j, will not occur in a minimal 3-pair network N .

Theorem 5.8. There does not exists a choice of P such that mi
i,j = l, mj

i,j = i, mi
i,l = l,

ml
i,l = j, mj

j,l = i and ml
j,l = j all hold at once.

Proof. Suppose, by way of contradiction, there exists a choice of P such thatm1
1,3 = m1

1,2 = 3,
m3

1,3 = m3
2,3 = 2, m2

1,2 = m2
2,3 = 1, where we have, without loss of generality, assume i = 1,

j = 2 and l = 3.
We first consider the case that N is unstable, and without loss of generality, suppose

there exists a Pt3-semi-cycle C. By Lemma 5.1, C is covered by Nt1,t2 , which is a minimal
(3, 2)-network such that m1

1,2 = 3 and m2
1,2 = 1. By inspecting (a)-(e) of Fig. 7, it is not

hard to see that there does not exist a choice of Pt3 , which can guarantee a Pt3-semi-cycle
and m3

1,3 = m3
2,3 = 2, m1

1,3 = 3, m2
3,2 = 1 all at once, which completes the proof for this case.

In the following, we consider the case that N is stable. As before, for notational conve-
nience, we will rewrite Psi,t1 , Psi,t2 and Psi,t3 as ri, gi and bi, respectively and rewrite Pt1 ,
Pt2 and Pt3 as r, g and b, respectively.

By applying 1) of Corollary 4.8 to Nt1,t3 and Nt1,t2 , respectively, we obtain ∅ ̸= b1 ∩ r2 =
br1(2) and ∅ ̸= g2 ∩ r1 = gr2(2), respectively. Hence, we have b1 ∩ g2 ̸= ∅ (thus 3) of Corollary
4.8 can be applied to Nt2,t3) and {

b1 ∩ g2 ≤ b1 ∩ r2;
b1 ∩ g2 ≤ r1 ∩ g2,

(9)

since otherwise br1(1, 2) and gr2(1, 2) would form an r-crossing with order 2, contradicting the
minimality of N . Similarly, we have g3 ∩ r1 ̸= ∅, r2 ∩ b3 ̸= ∅ (thus 3) of Corollary 4.8 can be
applied to Nt1,t2 and Nt1,t3), and the following inequalities:{

g3 ∩ r1 ≤ g3 ∩ b1;
g3 ∩ r1 ≤ b3 ∩ r1,

(10)

{
r2 ∩ b3 ≤ g2 ∩ b3;
r2 ∩ b3 ≤ r2 ∩ g3,

(11)
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According to 3) of Corollary 4.8, we have the following two cases:
Case 1) : There exist feasible i ̸= j such that Nti,tj satisfy (6). In this case, we infer that

either (i) b1 ∩ g3 ≤ b1 ∩ g2; r1 ∩ g2 ≤ r1 ∩ g3 or (ii) r2 ∩ b1 ≤ r2 ∩ b3; g2 ∩ b3 ≤ g2 ∩ b1 or (iii)
b3 ∩ r1 ≤ b3 ∩ r2; g3 ∩ r2 ≤ g3 ∩ r1 holds. Without loss of generality, suppose (i) holds, then
according to (9) and (10), we have

b1 ∩ g3 ≤ b1 ∩ g2 ≤ r1 ∩ g2 ≤ r1 ∩ g3 ≤ g3 ∩ b1,

which implies the existence of a cycle and contradicts the acyclicity of N .
Case 2) : None of Nt1,t2 , Nt1,t3 and Nt2,t3 satisfy (6). In this case, either (7) or (8) holds

for each of Nti,tj . If one of above (i)-(iii) holds, then we can obtain a contradiction by the
same arguments as in Case 1); otherwise, we have the following two subcases:

(2.1) b1 ∩ g3 ≤ b1 ∩ g2 ≤ b3 ∩ g2; g3 ∩ r2 ≤ g3 ∩ r1 ≤ g2 ∩ r1; r2 ∩ b1 ≤ r2 ∩ b3 ≤ r1 ∩ b3;

(2.2) b3 ∩ g2 ≤ b1 ∩ g2 ≤ b1 ∩ g3; g2 ∩ r1 ≤ g3 ∩ r1 ≤ g3 ∩ r2; r1 ∩ b3 ≤ r2 ∩ b3 ≤ r2 ∩ b1.

According to (9), (10) and (11), for Case (2.1), we have

b1 ∩ g3 ≤ b1 ∩ g2 ≤ b1 ∩ r2 ≤ b3 ∩ r2 ≤ g3 ∩ r2 ≤ g3 ∩ r1 ≤ g3 ∩ b1;

and for Case (2.2), we have

b3 ∩ g2 ≤ b1 ∩ g2 ≤ r1 ∩ g2 ≤ r1 ∩ g3 ≤ r1 ∩ b3 ≤ r2 ∩ b3 ≤ g2 ∩ b3.

Hence, both cases yield a cycle, contradicting the acyclicity of N . The proof is then com-
pleted.

6 Main Result

In this section, we shall establish the Langberg-Médard multiple unicast conjecture for k = 3.
Without specified otherwise, we assume N is a minimal 3-pair network with a choice of P.
We first introduce some basic tools developed in our previous work [1]-[5].

6.1 SN and gs(C)
For a strongly reachable k-pair network N = (V,A, S, T ), given a choice of P, for any arc
a ∈ A, define

s(a) := {(i, j) ∈ [k]× [k] : a ⊂ Psi,tj ∈ P} and SN := {s(a) : a ∈ A},

where [k] := {1, 2, . . . , k}.
The following seemingly trivial lemma is fundamental in our treatment.

Lemma 6.1. If Psi1 ,tj1
∩ Psi2 ,tj2

= ∅, then {(i1, j1), (i2, j2)} * s for any s ∈ SN .

Noticing that each arc of a strongly reachable network is passed by at most one path in
Ptj = {Ps1,tj , Ps2,tj , . . . , Psk,tj}, we have

SN ⊆ Sk := {{(i1, j1), (i2, j2), . . . , (ir, jr)} ⊆ [k]× [k] : j1, j2, . . . , jr are all distinct}.

For a minimal 3-pair network N , the following observation is useful.
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Lemma 6.2. If there exists h such that h ∈ ml1
i,j ∩ml2

i,l ∩ml3
j,l for some feasible l1, l2, l3 and

distinct i, j, l, then either {(h, i), (h, j)} /∈ SN or {(h, i), (h, l)} /∈ SN .

Proof. Without loss of generality, we assume h = 1. Then, noticing the paths Ps1,t1 , Ps1,t2

and Ps1,t3 have a same tail s1, and for each feasible i ̸= j, Ps1,ti∩Ps1,tj has an unique connected
component, we see that at most one of {(1, 1), (1, 2)}, {(1, 1), (1, 3)}, {(1, 2), (1, 3)} belongs
to SN , which completes the proof.

For a tuple of k × k matrices C = ((c
(1)
i,j ), (c

(2)
i,j ), . . . , (c

(k)
i,j )) satisfying (4), given s ∈ SN

and l ∈ [k], we define

g(l)s (C) :=
∑

(i,j)∈s

c
(l)
i,j and gs(C) :=

k∑
l=1

|g(l)s (C)|.

The following theorem, whose proof is straightforward and thus omitted, will be used as
a key tool to establish our results.

Theorem 6.3. C is a feasible multi-flow with rate (1, 1, . . . , 1) if gs(C) ≤ 1 for any s ∈ SN .

To avoid cumbersome wording, henceforth, N is said to be (linearly) solvable if there
exists a (linear) feasible multi-flow F with rate (1, 1, . . . , 1); meanwhile F is called a (linear)
routing solution of N .

6.2 Linear Routing Solutions

We first introduce some notations. For s = {(i1, j1), (i2, j2), . . . , (iα(s), jα(s))} ∈ SN , define
the following multi-set:

Inds := {i1, j1, i2, j2, . . . , iα(s), jα(s)},
where α(s) denotes the size of s. For any feasible l, denote by mInds(l) the multiplicity of l
in Inds (if l /∈ Inds, then mInds(l) = 0). An element (i, j) ∈ s is said to be diagonal if i = j;
otherwise non-diagonal. We use γ(s) to denote the number of diagonal elements in s. For a
quick example, consider s = {(1, 1), (2, 2), (1, 3)} ⊆ [3] × [3]. Then, Inds = {1, 1, 2, 2, 1, 3},
mInds(1) = 3, mInds(2) = 2, mInds(3) = 1, α(s) = 3 and γ(s) = 2.

Lemma 6.4. Let

C =

 1
2

1
4

1
4

1
4

−1
4

0
1
4

0 −1
4

 ,

 −1
4

1
4

0
1
4

1
2

1
4

0 1
4

−1
4

 ,

 −1
4

0 1
4

0 −1
4

1
4

1
4

1
4

1
2

 .

Then, for any s ∈ Sk, gs(C) > 1 if and only if α(s) = 3 and γ(s) = 0.

Proof. The result can be obtained by considering the following 4 cases.

1) γ(s) = 0. In this case, it can be verified that

gs(C) =
1

4

3∑
i=1

mInds(i) = 2α(s) =


1
2
, α(s) = 1;

1, α(s) = 2;
3
2
, α(s) = 3.
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2) γ(s) = 1. In this case, it can be verified that

gs(C) =


1
2
+ 1

4
+ 1

4
= 1, α(s) = 1;

3
4
+ 1

4
= 1, s = {(i, i), (i, j)}, where i ̸= j;

1
2
, s = {(i, i), (k, j)}, where i, j, k are distinct;

1, α(s) = 3.

3) γ(s) = 2. In this case, it can be verified that gs(C) = 1.

4) γ(s) = 3. In this case, it obviously holds true that gs(C) = 0.

The following lemma can be obtained via straightforward computations and thereby we
omit its proof.

Lemma 6.5. If

SN ⊆ S : = {{(i, j)} : 1 ≤ i, j ≤ 3}
∪ {{(i, 1), (j, 2)} : i = 2, 3; j = 1, 2, 3} ∪ {{(1, 1), (1, 2)}}
∪ {{(i, 1), (l, 3)} : i = 1, 2; l = 1, 2, 3} ∪ {{(3, 1), (3, 3)}}
∪ {{(j, 2), (l, 3)} : j, l = 1, 2, 3}
∪ {{(1, 1), (1, 2), (l, 3)} : l = 1, 2, 3} ∪ {{(2, 1), (j, 2), (l, 3)} : j, l = 1, 2, 3}
∪ {{(3, 1), (j, 2), (3, 3)} : j = 1, 2, 3}.

Then

C =

 3
4

0 1
4

0 0 0
1
4

0 −1
4

 ,

 0 0 0
0 3

4
1
4

0 1
4

−1
4

 ,

 −1
4

0 1
4

0 −1
4

1
4

1
4

1
4

1
2


is a linear routing solution of N .

We are now ready for the following theorem.

Theorem 6.6. If there exist distinct i, j, l ∈ {1, 2, 3} such that mi
i,j ∩ {i, j} ̸= ∅ and mi

i,l ∩
{i, l} ̸= ∅, then N is linearly solvable.

Proof. Suppose there exist distinct i, j, l ∈ {1, 2, 3} such that mi
i,j ∩ {i, j} ̸= ∅ and mi

i,l ∩
{i, l} ̸= ∅. To prove the theorem, we need to consider the following three cases:

1) i ∈ mi
i,j ∩mi

i,l;

2) j ∈ mi
i,j and l ∈ mi

i,l;

3) i ∈ mi
i,j and l ∈ mi

i,l.
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In the remainder of the proof, without loss of generality, we assume i = 1, j = 2 and
l = 3.

For Case 1), since 1 ∈ m1
1,2 ∩ m1

1,3, then Ps1,t1 is disjoint from the strongly reachable
2-pair network N ′ deduced by paths Ps2,t2 , Ps3,t2 , Ps2,t3 , Ps3,t3 . According to [3], N ′ always
has a linear routing solution ((

3
4

1
4

1
4

−1
4

)
,

( −1
4

1
4

1
4

3
4

))
.

Hence, N has the following linear routing solution: 1 0 0
0 0 0
0 0 0

 ,

 0 0 0
0 3

4
1
4

0 1
4

−1
4

 ,

 0 0 0
0 −1

4
1
4

0 1
4

3
4

 .

For Case 2), consider all s ∈ SN ⊆ S3 such that α(s) = 3. Let s = {(l1, 1), (l2, 2), (l3, 3)}.
If l1 = 1, then obviously γ(s) ̸= 0; if l1 = 2, then since 2 ∈ m1

1,2, we have l2 = 2 and hence
γ(s) ̸= 0; and if l1 = 3, since 3 ∈ m1

1,3, we have l3 = 3 and hence γ(s) ̸= 0. Thus, for any
s ∈ SN such that α(s) = 3, we have γ(s) ̸= 0. By Lemma 6.4, 1

2
1
4

1
4

1
4

−1
4

0
1
4

0 −1
4

 ,

 −1
4

1
4

0
1
4

1
2

1
4

0 1
4

−1
4

 ,

 −1
4

0 1
4

0 −1
4

1
4

1
4

1
4

1
2

 .

is a linear routing solution of N .
For Case 3), since 1 ∈ m1

1,2 and 3 ∈ m1
1,3, we deduce from Lemma 6.1 that SN ⊆ S, where

S is defined in Lemma 6.5. It then immediately follows that N is solvable, as desired.

We also need the following lemmas, which can be established by straightforward compu-
tations and whose proofs are then omitted.

Lemma 6.7. Let

S : = {{(i, j)} : 1 ≤ i, j ≤ 3}
∪ {{(i, 1), (j, 2)} : i = 1, 2; j = 2, 3} ∪ {{(1, 1), (1, 2)}, {(3, 1), (3, 2)}}
∪ {{(i, 1), (l, 3)} : i = 2, 3; l = 1, 3} ∪ {{(1, 1), (1, 3)}, {(2, 1), (2, 3)}}
∪ {{(j, 2), (l, 3)} : j = 2, 3; l = 1, 2} ∪ {{(1, 2), (1, 3)}, {(3, 2), (3, 3)}}
∪ {{(1, 1), (j, 2), (1, 3)} : j = 1, 2, 3} ∪ {{(2, 1), (2, 2), (l, 3)} : l = 1, 2}
∪ {{(2, 1), (3, 2), (l, 3)} : l = 1, 2, 3} ∪ {{(3, 1), (3, 2), (l, 3)} : l = 1, 3}.

If SN ⊆ S \ {(1, 1), (1, 2)}, then 8
14

7
14

−1
14

3
14

−5
14

2
14

3
14

−2
14

−1
14

 ,

 −3
14

7
14

−4
14

3
14

7
14

4
14

0 0 0

 ,

 −3
14

0 3
14

0 −2
14

2
14

3
14

2
14

9
14


is a linear routing solution of N . If SN ⊆ S \ {{(1, 1), (j, 2), (1, 3)} : j = 2, 3}, then 6

12
3
12

3
12

3
12

−3
12

0
3
12

0 −3
12

 ,

 −3
12

4
12

−1
12

3
12

7
12

2
12

0 1
12

−1
12

 ,

 −3
12

1
12

2
12

0 −2
12

2
12

3
12

1
12

8
12


is a linear routing solution of N .
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Lemma 6.8. Let

S : = {{(i, j)} : 1 ≤ i, j ≤ 3}
∪ {{(i, 1), (j, 2)} : i = 1, 2; j = 2, 3} ∪ {{(1, 1), (1, 2)}, {(3, 1), (3, 2)}}
∪ {{(i, 1), (l, 3)} : i = 2, 3; l = 1, 3} ∪ {{(1, 1), (1, 3)}, {(2, 1), (2, 3)}}
∪ {{(j, 2), (l, 3)} : j = 2, 3; l = 1, 3} ∪ {{(1, 2), (1, 3)}, {(2, 2), (2, 3)}}
∪ {{(1, 1), (j, 2), (1, 3)} : j = 1, 2, 3} ∪ {{(2, 1), (2, 2), (l, 3)} : l = 1, 2, 3}
∪ {{(2, 1), (3, 2), (l, 3)} : l = 1, 3} ∪ {{(3, 1), (3, 2), (l, 3)} : l = 1, 3}.

If SN ⊆ S \ {(1, 1), (1, 2)}, then 4
8

3
8

1
8

2
8

−2
8

0
2
8

−1
8

−1
8

 ,

 −2
8

3
8

−1
8

2
8

4
8

2
8

0 1
8

−1
8

 ,

 −2
8

0 2
8

0 −2
8

2
8

2
8

2
8

4
8


is a linear routing solution of N . If SN ⊆ S \ {{(1, 1), (1, 3)}} \ {{(1, 1), (j, 2), (1, 3)} : j =
2, 3}, then  4

6
1
6

1
6

1
6

−1
6

0
1
6

0 −1
6

 ,

 −2
6

3
6

−1
6

2
6

2
6

2
6

0 1
6

−1
6

 ,

 0 0 0
−1
6

−1
6

2
6

1
6

1
6

4
6


is a linear routing solution of N .

6.3 Proof of Main Result

Lemma 6.9. If all Nt1,t2, Nt1,t3 and Nt2,t3 are pseudo-minimal, then N is linearly solvable.

Proof. If there exist distinct i, j, l ∈ {1, 2, 3} such that mi
i,j ∩ {i, j} ̸= ∅ and mi

i,l ∩ {i, l} ̸= ∅,
then N is linearly solvable by Theorem 6.6. So we suppose in the remainder of the proof
that for any distinct i, j, l ∈ {1, 2, 3}, either mi

i,j = l or mi
i,l = j.

Without loss of generality, we assume mi
i,j = l. Then, by the pseudo-minimality of

Nti,tj , we have m
j
i,j∩{i, j} ̸= ∅. So, we assume mj

l,j = i since otherwise N is linearly solvable

according to Theorem 6.6. Then, by the pseudo-minimality ofNtj ,tl , we havem
l
l,j∩{l, j} ̸= ∅.

So, we assumeml
l,i = j since otherwiseN is linearly solvable according to Theorem 6.6. Then,

by the pseudo-minimality of Nti,tl , we have mi
l,i ∩ {i, l} ̸= ∅.

By the above discussions, we finally have l ∈ mi
i,j, j ∈ ml

i,l and i ∈ mj
j,l. Consider the

following cases: 1) j ∈ mj
i,j, i ∈ mi

i,l and l ∈ ml
j,l; 2) i ∈ mj

i,j, i ∈ mi
i,l and l ∈ ml

j,l; 2
′)

j ∈ mj
i,j, i ∈ mi

i,l and j ∈ ml
j,l; 2

′′) j ∈ mj
i,j, l ∈ mi

i,l and l ∈ ml
j,l; 3) i ∈ mj

i,j, i ∈ mi
i,l and

j ∈ ml
j,l; 3

′) i ∈ mj
i,j, l ∈ mi

i,l and l ∈ ml
j,l; 3

′′) j ∈ mj
i,j, l ∈ mi

i,l and j ∈ ml
j,l; 4) i ∈ mj

i,j,

l ∈ mi
i,l and j ∈ ml

j,l. It can be readily verified that Cases 2′) and 2′′) can be obtained from
Case 2) with the relabelling i 7→ j, j 7→ l, l 7→ i, and moreover, Cases 3′) and 3′′) can be
obtained from Case 3) with the relabelling i 7→ l, j 7→ i, l 7→ j. So, in the following, we only
need to consider Cases 1), 2), 3), 4).

For Case 1), without loss of generality, we assume i = 1, j = 2 and l = 3 and thus
2 ∈ m2

1,2, 1 ∈ m1
1,3 and 3 ∈ m2

2,3. Hence, Ps1,t1 , Ps2,t2 and Ps3,t3 are pairwise disjoint and the
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network has a linear routing solution 1 0 0
0 0 0
0 0 0

 ,

 0 0 0
0 1 0
0 0 0

 ,

 0 0 0
0 0 0
0 0 1

 .

For Case 2), without loss of generality, we assume i = 1, j = 2 and l = 3 and thus
1 ∈ m2

1,2 ∩m1
1,3 ∩m2

2,3; 2 ∈ m3
1,3 and 3 ∈ m1

1,2 ∩m3
2,3. It then follows from Lemmas 6.1 and

6.2 that either SN ⊆ S \ {(1, 1), (1, 2)} or SN ⊆ S \ {{(1, 1), (j, 2), (1, 3)} : j = 2, 3}, where
S is defined in Lemma 6.7. Hence N is solvable, which proves the theorem for Case 2).

For Case 3), without loss of generality, we assume i = 1, j = 2 and l = 3. It can be
readily verified that 1 ∈ m2

1,2 ∩ m1
1,3 ∩ m2

2,3; 2 ∈ m3
1,3 ∩ m3

2,3 and 3 ∈ m1
1,2. It then follows

from Lemmas 6.1 and 6.2 that either SN ⊆ S \ {(1, 1), (1, 2)} or SN ⊆ S \ {{(1, 1), (1, 3)}} \
{{(1, 1), (j, 2), (1, 3)} : j = 2, 3}, where S is defined in Lemma 6.8. Hence N is solvable,
which proves the theorem for Case 3).

For Case 4), if there exist feasible i ̸= j such that mi
i,j is not singleton, then N falls

into at least one of the previous cases and hence is linearly solvable. So, we assume mi
i,j is

singleton for all feasible i ̸= j, which however is impossible by Theorem 5.8. The proof is
then completed.

We are now ready for our main result. As before, we will adopt the same notations
as in the proof of Theorem 5.8, i.e., we will rewrite Psi,t1 , Psi,t2 and Psi,t3 as ri, gi and bi,
respectively and rewrite Pt1 , Pt2 and Pt3 as r, g and b, respectively.

Theorem 6.10. Any strongly reachable 3-pair network is linearly solvable.

Proof. It suffices to prove that any minimal 3-pair network N is linearly solvable. By Corol-
lary 5.7 and Theorem 6.9, we suppose N contain a b-semi-cycle C of type 1 such that C is
either an uppermost b-semi-cycle in Nt1,t3 or an uppermost b-semi-cycle in Nt2,t3 . Note that
C is covered by a minimal (3, 2)-network Nt1,t2 , we have the following two cases:

Case 1) : Nt1,t2 has the topology as in Fig. 7 (b). In this case, as shown in Fig. 9 (a),
let rgi (1) = [si, v1], r

g
j (1) = [sj, v2], r

g
l (1) = [sl, v3], r

g
j (2) = [v4, v5], g

r
j (2) = [u4, u5] and

rgj (3) = [v6, v7]. Then, C = Ĉ1 ∪ Ĉ2, where Ĉ1 = [v2, v4, v5, v6] and Ĉ2 = [v2, u4, u5, v6]. Since
C is an uppermost b-semi-cycle in either Nt1,t3 or Nt2,t3 , we have either [sj, v2, v4, v5, v6] ⊂ bj
or [sj, v2, u4, u5, v6] ⊂ bj. As a result, we have s([sj, v2]) = {(j, 1), (j, 2), (j, 3)} and by the
regularity of N , a := bj ∩ [v6, v7] is an arc such that s(a) = {(j, 1), (j, 2), (j, 3)} as shown in
Fig. 9 (b). For the two choices of bj, we have:

(1) if Ĉ1 ⊂ bj, then s([v4, v5]) = {(j, 1), (i, 2), (j, 3)}, s([u4, u5]) = {(j, 1), (l, 2)};
(2) if Ĉ2 ⊂ bj, then s([u4, u5]) = {(l, 1), (j, 2), (j, 3)}, s([v4, v5]) = {(j, 1), (i, 2)}.

(12)

Now consider paths bi and bl. Clearly, bi∩[sj, v2] = bi∩[v4, v5] = bi∩[u4, u5] = bl∩[sj, v2] =
bl ∩ [v4, v5] = bl ∩ [u4, u5] = ∅ and it is also not hard to see that bi ∩ [v6, v7] = bl ∩ [v6, v7] = ∅.
We have the following two cases.

Case 1.1) bi ∩ [sl, v3] = bl ∩ [si, v1] = ∅. For this case, we shall prove N is linearly
solvable by Lemma 6.4. Noticing that s([si, v1] ∩ bi) = {(i, 1), (i, 2), (i, 3)}, s([sj, v2]) =
s(a) = {(j, 1), (j, 2), (j, 3)} and s([sl, v3] ∩ bl) = {(l, 1), (l, 2), (l, 3)}, and by (12), we choose
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si sj sl

t1 t2

v1 v2 v3

v4 u4

v5 u5

v6

v7

(a)

si sj sl

t1 t2

v1 v2 v3

v4 u4

v5 u5

v6

v7

a

bj

(b)

Figure 9: Illustrations for the proof of Case 1) of Theorem 6.10. In (b), we choose bj such

that Ĉ1 ⊂ bj and s(bj ∩ [v6, v7]) = {(j, 1), (j, 2), (j, 3)}.

Ĉ1 ⊂ bj if j = 1 and choose Ĉ2 ⊂ bj if j = 2 (we arbitrarily choose Ĉ1 ⊂ bj or Ĉ2 ⊂ bj if
j = 3). Then, for all s ∈ SN such that α(s) = 3, we have γ(s) ̸= 0, which completes the
proof for this case.

Case 1.2) bi ∩ [sl, v3] ̸= ∅ or bl ∩ [si, v1] ̸= ∅. Without loss of generality, we suppose
bi ∩ [sl, v3] ̸= ∅. In this case, a′ := bi ∩ [sl, v3] is an arc such that s(a′) = {(l, 1), (l, 2), (i, 3)}
and by the minimality of N , it is not hard to see bl|r = bl|g = brl (1) = bgl (1). As a result, if
l = 3, the network can be solved by 3

4
1
4

0
1
4

−1
4

0
0 0 0

 ,

 −1
4

1
4

0
1
4

3
4

0
0 0 0

 ,

 0 0 0
0 0 0
0 0 1

 ,

otherwise, we have either i = 3 or j = 3. If i = 3, j = 1, we choose Ĉ1 ⊂ bj; if i = 3, j = 2,

we choose Ĉ2 ⊂ bj; and if j = 3, we arbitrarily choose Ĉ1 ⊂ bj or Ĉ2 ⊂ bj. For all the above
choices of bj, we have that for all s ∈ SN such that α(s) = 3, γ(s) ̸= 0, and hence N is
linearly solvable by Lemma 6.4.

Case 2) : Nt1,t2 has the topology as in Fig. 7 (e). In this case, we define v1-v7, u4, u5 in the
same way as in Case 1) and let rgl (2) = [w4, w5], as shown in Fig. 10 (a). Then, N contains

the type 1 b-semi-cycle C = Ĉ1 ∪ Ĉ2, where Ĉ1 = [v2, v4, v5, v6] and Ĉ2 = [v2, u4, u5, v6]. Let
(v5, w4, w5, u4) := [v5, w4, w5, u4] \ {v5, u4}, we have two subcases according to Remark 5.4:

2.1) (v5, w4, w5, u4) ∩ (∪3
l′=1bl′) = ∅. In this case, noticing that α(s([w4, w5])) = 2 for any

choices of bj, similarly as in Case 1), N is linearly solvable.
2.2) (v5, w4, w5, u4) ∩ (∪3

l′=1bl′) ̸= ∅. In this case, since C is an uppermost b-semi-cycle in
either Nt1,t3 or Nt2,t3 , we have either [sj, v2, v4, v5, v6] ⊂ bj or [sj, v2, u4, u5, v6] ⊂ bj and hence
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si sj sl

t1 t2

v1 v2 v3

v4

v5

w4

w5

u4

u5

v6

v7

(a)

si sj sl

t1 t2

v1 v2 v3

v4

v5

w4

w5

u4

u5

v6

v7

bl

bj

(b)

Figure 10: Illustrations for the proof of Case 2) of Theorem 6.10. In (b), we choose path bj
such that Ĉ1 ⊂ bj and s(bj ∩ [v6, v7]) = {(j, 1), (j, 2), (j, 3)}. We have [sl, v3, w4] ⊂ bl and
hence s(bl ∩ [w4, w5]) = {(l, 1), (i, 2), (l, 3)}.

(v5, w4, w5, u4) ∩ bj = ∅. Moreover, by the minimality of N , (v5, w4, w5, u4) ∩ bi = ∅. Hence,
we have (v5, w4, w5, u4) ∩ bl ̸= ∅. Furthermore, we can see that [sl, v3, w4] ⊂ bl, as shown in
(b) of Fig. 10, which further indicates gl|r = gl|b = grl (1) = gbl (1). Hence, if l = 2, N can be
solved by  3

4
0 1

4

0 0 0
1
4

0 −1
4

 ,

 0 0 0
0 1 0
0 0 0

 ,

 −1
4

0 1
4

0 0 0
1
4

0 3
4

 .

If l ̸= 2, using the fact that s([w4, w5] ∩ bl) = {(l, 1), (i, 2), (l, 3)} and Lemma 6.4, the same
arguments as in Case 2.1) will yield that N is linearly solvable, completing the proof.
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